Crystal and Molecular Structure of 1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane

JÜRGEN KOPF, KLAUS VON DEUTEN and GÜNTER KLAR*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, D-2000 Hamburg 13, Martin-Luther-King-Platz 6, F.R.G.

Received April 18, 1979

The colourless crystals of the title compound are monoclinic, a = 679.0(10), b = 1003.0(9), c = 1191.4(8) pm, $\beta = 105.14(8)^\circ$, space group P2₁/c. A three dimensional X-ray analysis of the structure was made with counter data (1903 unique reflections with $|F_o| > 3\sigma$). The structure was determined by direct methods and refined anisotropically by full matrix least squares methods to a conventional unweighted R of 0.059. The structure consists of discrete molecules $As_4O_4(CH_2)_2$ which can be

TABLE I. Final Positional and Thermal Parameters for 1.

described as penetrating distorted As_4 -tetrahedra and trans- O_4C_2 -octahedra. The mean bond lengths and angles are: AsO = 179.5, AsC = 196.2 pm, OAsO =101.8, CAsO = 99.3, AsOAs = 129.0, AsCAs = 119.4° .

Introduction

During our work on cyclic chelating ligands [1] we investigated the complexing behaviour of organooxoarsines $[RAsO]_n$ [2]. An interesting example of this class is $[CH_2(AsO)_2]_n$, of which an insoluble

Atom	X/a(o)	$Y/b(\sigma)$	Ζ/c(σ)			
As1	0.7032(2)	0.1040(1)	-0.0532(1)			
As2	0.7965(2)	0.1053(1)	0.2301(1)			
As3	0.6007(2)	0.3723(1)	0.0947(1)			
As4	1.0609(2)	0.3006(1)	0.0888(1)			
012	0.7262(13)	0.0305(8)	0.0878(9)			
O23	0.6381(11)	0.2501(9)	0.2100(7)			
O34	0.8551(13)	0.4135(9)	0.0936(8)			
014	0.9415(12)	0.1949(10)	-0.0267(7)			
C13	0.5240(15)	0.2552(11)	-0.0389(9)			
C24	1.0546(19)	0.1875(15)	0.2234(11)			
H131	0.4022(15)	0.1834(11)	-0.0484(9)			
H132	0.4629(15)	0.3480(11)	-0.0793(9)			
H241	1.1207(19)	0.2588(15)	0.2907(11)			
H242	1.1578(19)	0.1046(15)	0.2280(11)			
Atom	$U_{11}(\sigma)$	U 22 (σ)	U ₃₃ (o)	$U_{12}(\sigma)$	U ₁₃ (σ)	U ₂₃ (σ)
As1	0.0260(5)	0.0306(6)	0.0362(6)	-0.0014(4)	0.0108(4)	-0.0103(5)
As2	0.0287(6)	0.0427(7)	0.0343(6)	0.0095(5)	0.0095(5)	0.0139(5)
As3	0.0196(5)	0.0249(5)	0.0313(5)	0.0046(4)	0.0067(4)	-0.0017(4)
As4	0.0156(5)	0.0474(7)	0.0417(7)	-0.0067(5)	0.0102(4)	-0.0076(6)
012	0.0301(40)	0.0253(39)	0.0582(57)	0.0015(33)	0.0124(38)	-0.0005(38)
023	0.0229(35)	0.0437(46)	0.0287(38)	0.0075(33)	0.0118(29)	0.0048(35)
O34	0.0295(39)	0.0323(42)	0.0452(49)	-0.0097(33)	0.0113(35)	-0.0129(37)
014	0.0247(37)	0.0522(54)	0.0334(43)	-0.0049(36)	0.0148(32)	-0.0126(39)
C13	0.0196(43)	0.0296(50)	0.0260(46)	0.0030(37)	0.0048(36)	0.0044(40)
C24	0.0264(53)	0.0560(81)	0.0315(59)	0.0121(54)	-0.0040(44)	-0.0037(56)

67

^{*}Author to whom correspondence should be addressed.

As1-012	180.3(10)	As1-C13-As3	119.7(5)
As2012	180.0(10)	As2–C24–As4	119.0(6)
As2–O23	178.6(8)		1104+04
As3–O23	180.8(8)		119.4 ± 0.4
As3034	178.0(8)	012-As1-014	100.8(4)
As4034	181.1(9)	012-As2-O23	102.1(4)
As1014	181.2(8)	O23-As3-O34	102.6(4)
As4–014	175.8(8)	014-As4-034	101.5(4)
	179.5 ± 0.7		101.8 ± 0.4
As1-C13	197.9(11)	C13-As1-O12	98.0(4)
As3-C13	193.7(11)	C13-As1-O14	98.1(4)
As2-C24	195.7(14)	C13-As3-O23	99.6(4)
As4-C24	197.3(15)	C13-As3-O34	100.8(4)
		C24-As2-O12	99.1(5)
	196.2 ± 0.9	C24-As2-O23	99.5(5)
As1012As2	130.1(5)	C24-As4-O14	100.7(5)
As2O23As3	127.8(4)	C24-As4-O34	98.8(5)
As3-034-As4	127.8(5)		
As1014As4	130.4(4)	_	99.3 ± 0.4
	129.0 ± 0.7	-	

TABLE II. Bond Lengths (pm) and Angles (°) in 1, Standard Deviations.

polymeric and a soluble dimeric form (1) have been described [3-5]. For 1 an adamantane-analogue structure has been proposed [5], but has not been characterized unambiguously. Since we obtained well structured crystals on slow evaporation of a benzene solution of 1, we carried out an X-ray structure determination.

Experimental

Preparation

The starting compound methylene-bis(dichloroarsine) was prepared according to the literature [3], but isolated by extraction with CCl_4 instead of vacuum distillation. Hydrolysis with 2 N NaOH and addition of the alkaline solution to a solution of excess NH₄Cl yielded a precipitate of methylene-bis-(oxoarsine). 1 (m.p. 538 K) was obtained by extraction with benzene.

X-ray Study

Intensity data were collected on a Syntex P 2₁ four-circle diffractometer, using Mo-K_{α} (λ = 71.069 pm) radiation. From a rotation photograph 16 reflections of varying intensities were selected for automatic lattice determination, which showed the crystal to be monoclinic P. Systematic absences holl with 1 = 2n + 1 and 0k0 with k = 2n + 1 showed the space group to be P2₁/c. The lattice parameters are a =679.0(10), b = 1003.0(9), c = 1191.4(8) pm, $\beta =$ 105.14(9)°; Z = 4, V = 783.22 × 10⁶ pm³; crystal dimensions: 0.25 × 0.25 × 0.50 mm³. During data

Fig. 1. ORTEP-plot [8] of 1 and numbering scheme of atoms.

collection two check reflections were measured after every 98 reflections. A total of 2301 independent reflections with $1 < 2\theta < 60^{\circ}$ was collected. An empirical absorption correction based on 7 strong reflections was then applied and all data corrected for polarization and Lorentz factors. The solution was carried out with 1903 reflections having $|F_{o}| > 3\sigma$.

Solution and Refinement

The positions of the arsenic atoms were found by direct methods (MULTAN 74, [6]). Oxygen and carbon atoms could then be located on difference Fourier maps and all heavy atoms were refined anisotropically by full matrix least squares methods using the SHEL 76 program system [7]. Unit weights were used throughout. While peaks corresponding to hydrogen appeared near the carbon atoms in the difference Fourier maps, their refinement proved unsatisfactory and their positions were calculated instead, but not included in the refinement except for a common isotropic temperature factor. This led to a final R = 0.059. Tables of $|F_o|$ and $|F_c|$ values are available on request.

The final positional and thermal parameters can be found in Table I.

Results and Discussion

The solid state structure of I consists of discrete molecules As₄O₄(CH₂)₂ (1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane). Fig. 1 shows the molecular structure, the interatomic distances and angles are given in Table II.

In contrast to cubic arsenic(III) oxid (arsenolite) [9, 10], which crystallizes in Fd3m with the As_4O_6 units (2) occupying a diamond-like lattice, As_4O_4 -(CH₂)₂, the molecular structure of which is related to 2, crystallizes in monoclinic P2₁/c with no recognizable super-structure.

TABLE III. Distances (pm) and Angles (°) in the As₄- and O_4C_2 -Units of 1.

As1··As2	326.7	As2··As1··As3	58.0
As2··As3	322.8	As3··As1··As4	58.2
As3··As4	322.5	As1··As2··As4	58.3
As1··As4	324.1	As3··As2··As4	58.3
		As1··As3··As2	59.1
	324.0 ± 1.0	As1··As3··As4	58.6
As1··As3	338.7	As1··As4 ··As2	59.0
As2··As4	338.6	As2··As4 ··As3	58.4
	338.7 ± 0.1		58.5 ± 0.1
012023	279.0	023012014	90.0
023034	280.1	012023034	89.5
034014	276.5	023034014	90.2
012014	278.5	012014034	90.4
	278.5 ± 0.8		90.0 ± 0.2
C13··O12	285.6	C13··O12··C24	93.5
C13++O23	286.3	C13··O23··C24	93.3
C13O34	286.6	C13··O34··C24	92.9
C13014	286.5	C13··O14··C24	92.9
C24012	286.1		
C24023	286.0		93.2 ± 0.2
C24O34	287.6	012··C13··O34	86.9
C24014	287.7	023··C13··O14	87.0
	2966+02	012··C24··O34	86.7
	200.0 ± 0.5	023··C24··O14	86.8
As2··As1··As4	62.7		96.0 1.0 1
As1···As2···As3	62.9		86.9 ± 0.1
As2··As3··As4	63.3		
As1··As4··As3	63.2		
	63.0 ± 0.1		

1 can be derived from As_4O_6 (2), in which the four arsenic atoms are at the corners of a tetrahedron while the six oxygen atoms form an octahedron, by substitution of two *trans*-oxygen atoms by CH₂groups. However, since the As-C and As-O distances are different, the *trans*-O₄C₂-unit loses the octahedral symmetry being elongated along the CC-axis, and the As₄-unit is distorted from an ideal tetrahedron (Table III). Overall, the T_d symmetry of 2 is lowered to D_{2d} in 1.

TABLE IV. Comparison of Distances (pm) and Angles (°) in the Adamantane Derivatives 1, 2 and 3.

		1	2 [9]	3 [11]
Distance	As-O	179.5	180	177
	As-C	196.2	_	196
	As••As`	324.0/338.7	321	316.5
	00	278.5	276	273
Angle	O-As-O	101.8	100	100.5
U	C-As-O	99.3	-	97.7
	As-O-As	129.0	126	126.7

The structure of 1 also shows certain similarities with that of 5-methyl-1,3,7-triarsa-2,8,10-trioxaadamantane (3) [11], in which four mutually bonded carbon atoms remain of the adamantane structure. With reference to $A_{S_4}O_6$, the basic units of 3 are an $A_{S_3}C$ - and a fac- O_3C_3 -unit. Since the atomic radius of carbon is smaller than that of arsenic, the highly symmetric structure of 2 is even more distorted in 3 than in 1 and generally leads to shorter bond lengths (cf. Table IV).

Acknowledgements

We thank Prof. E. Weiss for granting the use of the single crystal diffractometer sponsored by the Deutsche Forschungsgemeinschaft.

References

- 1 T. Weiss and G. Klar, Z. Naturforsch., 34b, 448 (1979).
- 2 H. Müller, Diplomarbeit, Universität Hamburg (1974).
- 3 F. Popp, Chem. Ber., 82, 152 (1949).
- 4 A. I. Titiv and B. B. Levin, Sbornik Statei Obshkei Khim., 2, 1469 (1953); C.A., 49, 4503i (1955).
- K. Sommer, Z. Anorg. Allg. Chem., 377, 120 (1970).
 P. Main, M. M. Woolfson and L. Lessinger, University of York, England, G. Germain and J.-P. Declerq, Université de Louvain, Belgique, MULTAN 74, modified program system after G. Germain, P. Main and M. M. Woolfson, Acta Cryst., 27A, 368 (1971).
- 7 G. Sheldrick, Programs for Crystal Structure Determination', Cambridge, England (1975).
- 8 C. K. Johnson, 'ORTEP: ORNL-3794', revised, Oak Ridge, Tennessee, USA (1966).
- 9 R. M. Bozorth, J. Am. Chem. Soc., 45, 1621 (1923).
- 10 L. R. Maxwell, S. B. Hendricks and L. S. Deming, J. Chem. Phys., 5, 626 (1937).
- 11 B. J. McKerley, K. Reinhardt, J. L. Mills, G. M. Reisner, J. D. Korp and I. Bernal, *Inorg. Chim. Acta*, 31, L411 (1978).